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Abstract: The importance of phase type distribution in modeling activities cannot be under emphasized when both 

the first and second moments of a distribution are available or when the sequence of data points for 

computing moments is the information available. In continuous time process, phase – type distribution 

can be viewed to be the distribution of the time to absorption for an absorbing finite state Markov chain, 

and it  is widely used in queueing theories and other fields of applied probabilities with the used of 

generalized Erlang, Coxian, Hypo-exponential, and Hyper-exponential distributions  In this study, fitting 

analysis of general phase type distribution have been looked into, in order to provide meaningful study  

into the probability function, mean, kth moment, variance, Laplace Stieltjes transform and squared 

coefficient of variation of phase type distribution. We begin from the tractability and memory less 

properties of exponential distribution, and since these properties are not enough, we looked into the 

passage through a phases of exponential stages by the use of matrix and vector operations to arrive at 

performance measures. Illustrative examples are demonstrated for various cases to arrive at various 

values for probability functions, Laplace Stieltjes transform, squared coefficient of variation,kth 

moment, mean and variance for the phase type distribution. 

Keywords:  Coxian distribution, Erlang distribution, Hyper-exponential distribution, Hypo-exponential distribution, 

Phase type distribution. 

 

Introduction 

The exponential distribution is very important due to 

both its tractability and memoryless characteristics in 

performance modeling, but to overcome the model 

procedures these two properties may not be enough, and 

this makes the exponential distribution not sufficient. To 

model general distributions while sustaining the 

tractability property of the exponential, we make use of 

Phase type distribution. Also, phase - type distributions is 

very useful when the distribution with known mean and 

variance is to be formed, and the name phase-type 

distributions came to be due to fact that, processes can be 

represented as the movement through a succession of 

exponential stages. Phase type distribution has it major 

applications in queueing theories and applied 

probabilities with the used of generalized Erlang, Coxian, 

Hypo-exponential, and Hyper-exponential distributions. 

(Marie, 1980) obtained the useful technique in phase type 

distribution when subsystems are reduced to flow-

equivalent servers representing the complementary 

network, while (Neuts, 1981) initiated the much cited 

article on phase-type distributions, and (Cumani, 1982;  

O’Cinneide, 1989) established some Important 

theoretical concepts on phase-type. (Ramaswami et al., 

1980; Ramaswami, 1988) derived a stable recursive 

scheme to compute the steady state probability vector. 

 (Aalen and Sidje, 1993) discussed the Hessenberg 

matrix computation of the exponential in the evaluation 

of the Padé approximation, while (Agboola, 2007) 

demonstrated the application of performance measures of 

M/G/1 queue system in solving the real life situation, and 

(Christian and Stephane, 2010) concentrated mainly on 

the finding of a Markov chain associated with some 

phase type distribution. The paper obtains some new 

results, and mentioned the problem left. Furthermore, 

(Agboola, 2010)   applied the second order recurrence 

relation with constant coefficient, limiting behaviour and 

recursion process to arrive at performance measures, 

while (Aalen, 2014) provided the applications of phase 

type distribution in survival analysis. He analysed how a 

phenomenon such as a disease, moves through different 

phases, and calculated hazard rates and densities of 

phase-type distributions using Markov chain principle 

and affirmed that hazard rates are asymptotically 

constant due to quasi-stationarity.  

(Agboola, 2016) determined the relative mix in the 

distribution of each machine type, and establishing a link 

between the durability and maintenance of each type of 

machine, using the repairman problem with multiple 

batch deterministic repairs of two different machine 

types, while (Belen et  al., 2020) developed a phase-type 

distribution approximation function so as to avoid the 

calculation of an inverse matrix. In addition, (Agboola, 

2021) investigated the direct equation methods for the 

stationary distribution of Markov chains which produce a 

significantly more accurate response in less time for 

some types of situations when a specified number of 

well-defined stages have been completed. While 

(Agboola and Ayoade, 2021) obtained the probabilities 

of moving from transient states to one or more of the 

closed communicating classes and the probability of the 

absorption matrix, and (Agboola and Badmus, 2021) 

analysed the distribution function of the renewal process 

 using the concept of discrete time Markov chain to 

obtain the performance measures which affirmed that, the 

Poisson process is the only renewal process with a linear 

mean value function. (Agboola and Obilade, 2022) 

considered the repairman problem with multiple batches 

of deterministic repairs of two different machine types, 

and established that, the closer the system is to a 

balanced situation the less is the discrepancy, while 

(Agboola and Ayinde, 2022). Developed an iterative 

solution methods for the stationary distribution of 

Markov chains and showed that, the block iterative 
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method requires only a single iteration to obtain the 

solution, and (Osogami and Harchol-Balter, 2002) 

derived a partial characterization of the set of busy period 

durations which are presented by an r-phases Coxian 

distribution.  (Bo Henry, 2022) extended the phase-type 

modeling to accommodate competing risks by using 

Coxian competing risks model and some data are 

evaluated. (Martin, 2023) Illustrated the multi-state 

processes models and when the dimension of the state 

space is greater than one obtained the proportional 

hazards specification.  

(Yudong and Zhi-Scheng, 2023) used acyclic phase-type 

distributions (APHDs) in the canonical form to obtain a 

generic method for the two-layer censored data and 

formulated the expectation algorithm to compute the 

estimate by maximum likelihood. (Acal et al., 2024) built 

a non-homogeneous phase-type distribution for the 

hazard rate, reliability function, cumulative hazard rate 

using the maximum likelihood, and the characteristic 

function is evaluated. (Hobolth et al.,2024) demonstrated 

that phase-type distributions in coalescent models, by 

showing the 'phases' in the phase-type distribution 

correspond to states in the ancestral process, and 

concluded that, phase-type distributions enable a 

mathematical framework for coalescent theory.  

However, in this study, we established fitting analysis of 

general phase type distribution, in order to evaluate the 

mean, 𝑘𝑡ℎ moment, variance, Laplace Stieltjes transform 

and squared coefficient of variation of phase type 

distributions. 

Notation 

𝐸(𝑌), expected value of random variable Y; 𝜇, service 

time parameter; 𝜎𝑦
2, variance; 𝑓𝑌(𝑦), density function of 

random variable Y;  𝐹𝑌(𝑦), distribution function of 

random variable Y; 𝐿𝑦(𝑠), Laplace transform of random 

variable Y;  𝑝𝑘 , probability of only the first k service 

phases being completed before the process is terminated; 

𝐸[𝑌𝑘],  𝑘𝑡ℎ moment of a random variable Y; ∝𝑖, the 

probability of moving from state 𝑖 to state (𝑖 + 1); 𝑐𝑦
2, 

squared coefficient of variation of Random variable Y; 

𝑅𝑖 ,     𝑖 = 1, 2, 3,… , 𝑘, initial probabilities;  𝑟𝑖𝑗 ,     𝑖, 𝑗 =

1, 2, 3,… , 𝑘, routine probability. 

 

Methodology 

The study area emphasized the analysis of exponential 

distribution, two –exponential service phases, and 

processes, and general phase distribution, with the 

evaluation of fitting analysis of general phase type 

distribution to arrive at performance measure, Mean, 

variance, 𝑘𝑡ℎ moment, Laplace transform and squared 

coefficient of variation for general phase type 

distribution  

The exponential -2 phase Distribution 

Let Y denotes the random variable for service time of a 

customer at a service center, that exponential distributed 

with parameter μ > 0 which consists of a single 

exponential phase is the time that the customer spends 

receiving service and this excluded the time the customer 

spends waiting for service. This is illustrated graphically 

in Figure 1 where the single exponential phase is denoted 

by a circle which contains the parameter of the 

exponential distribution. Customers are entering the stage 

from the left when amount of time which is exponentially 

distributed with parameter μ is spending within the stage 

and follow by customer exit to the right. If the random 

variable Y is chosen to represent the inter-arrival time of 

customers to a service center, then Y is exponentially 

distributed with mean E(Y) =
1

μ
    and variance    σy

2 =
1

μ2
 

 

 

 

 

Figure 1: An Exponential Service Phase 

The figure 1 indicates that, the service provided to a 

customer can be expressed as one exponential phase, 

while the figure 2 indicates that, the service time can be 

expressed by a second exponential phase.  

 

 

 

              1                                 2  

 

Figure 2: Two Exponential Service Phases in Tandem 

With random variable Y the customer receives service 

which is exponentially distributed with parameter 𝜇 as 

the customer enters the servicing process. At the 

completion of service’s stage, the customer enters the 

second stage when the exponentially distributed service 

time with parameter 𝜇 is begins with. At the second stage 

completion, another’s customer service time is begins 

with by service process. Since both service stages are the 

same exponentially distributed with parameter 𝜇, and 

they are independent. Then, two independent servers are 

not containing in the servicing process, but consist of a 

single service provider that operates in one stage or the 

other at a given time.  

To analyze this situation, we shall assume that the 

probability density function of each of the phases is 

given by 

𝑓𝑌(𝑦) = 𝜇 𝑒
−𝜇𝑦 ,   (1) 

With  

Expectation, 𝐸(𝑌) =
1

𝜇
    

 And   

Variance,    𝜎𝑦
2 =

1

𝜇2
 . 

The time that is randomly chosen from 𝑓𝑌(𝑦) is first 

spends by the customer. After the time completion, 

another amount of time chosen independently from  

𝑓𝑌(𝑦) is again spends. After the completion of this 

second time chosen, the new customer starts to receive 

service immediately the one in service departs. The total 

time distribution spent by the customer in the service is 

now looked into, and this is taking to be the random 

variable 𝑋 which is the sum of two identically distributed 

and independent exponential random variables.  

Taking the exponentially random variable distributed 

with parameter μ to be 𝑌. 

Then 

𝑋 =  𝑌 +  𝑌.    

  (2) 

Therefore, using the convolution theorem relating to two 

random variables that are independent,  

The convolution theorem states that 

𝑓𝑋(𝑥) = ∫ 𝑓𝑌(𝑦)
∞

−∞

𝑓𝑌(𝑥 − 𝑦)𝑑𝑦 

= ∫ 𝜇 𝑒−𝜇𝑦
𝑥

0

𝜇 𝑒−𝜇(𝑥−𝑦) 𝑑𝑦 

  

𝜇 

𝜇 𝜇 
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{
= 𝜇2𝑒−𝜇𝑦 ∫  𝑑𝑦

𝑥

0
= 𝜇2𝑥𝑒−𝜇𝑦 ,        𝑥 ≥ 0

0,       𝑥 < 0
 

   (3) 

The equation (3) represents the frequency density 

function for an Erlang-2, 𝐸2 distribution, while the 

equation (4) below represents its cumulative distribution 

𝐹𝑋(𝑥) = 1 − 𝑒
−𝜇𝑥 − 𝜇𝑥𝑒−𝜇𝑥 = 1 − 𝑒−𝜇𝑥{1 + 𝜇𝑥},   𝑥 ≥
0.  (4) 

The density function can equally be computed using 

Laplace transforms, by taking the Laplace transform of 

the total service time frequency density function as the 

product of the Laplace transform of the different stages. 

 Taking the Laplace transform of the total time in service 

distribution to be 

𝐿𝑋(𝑠) = ∫  𝑒−𝑠𝑥
∞

0

𝑓𝑋(𝑥)𝑑𝑥 

While the Laplace transform of each stage of the 

exponential phases be 

𝐿𝑦(𝑠) = ∫  𝑒−𝑠𝑦
∞

0

𝑓𝑌(𝑦)𝑑𝑦 = (
𝜇

𝑠 + 𝜇
) 

Then 

𝐿𝑋(𝑠) = 𝐸[ 𝑒
−𝑠{𝑦1+𝑦2}] = 𝐸[𝑒−𝑠𝑦1] ×= 𝐸[𝑒−𝑠𝑦2] =

(
𝜇

𝑠+𝜇
)
2
  (5) 

To find the function of x whose transform is (
μ

s+μ
)
2
, the 

Laplace inversion theorem is being used. 

Since the Laplace transform of    
1

(s+a)r+1
 , i..e.   

LX (
1

(s+a)r+1
) =

xr

r !
 e−ax. 

By representing a = μ and r = 1, we arrived at inversion 

of LX(s) to obtain 

𝑓𝑋(𝑥) = 𝜇
2𝑥𝑒−𝜇𝑦,        𝑥 ≥ 0 

Likewise, we may obtain the mean value and higher 

moments from the Laplace transform as 

𝐸[𝑋𝑘] =  (−1)𝑘
𝑑𝑘

𝑑𝑠𝑘
 𝐿𝑋(𝑠)|

𝑠=0

,    𝑓𝑜𝑟 𝑘 = 1, 2,⋯ 

𝐸[𝑋] =
𝑑

𝑑𝑠
 𝐿𝑋(𝑠)|

𝑠=0
= −𝜇2

𝑑

𝑑𝑠
(
1

𝑠+𝜇
)
2
= 𝜇2

𝑑

𝑑𝑠
(𝑠 +

𝜇)−2|
𝑠=0

=
2

𝜇
.  (6) 

𝜎𝑋
2 = (

1

𝜇
)
2
+ (

1

𝜇
)
2
=

2

𝜇2
 .   

    (7) 

General Phase-Type Distributions 

Thee general phase type distribution consist of a 

collection of k phases such that the random variable that 

describes the time spent in phase 𝑖, 𝑖 =  1,2, . . . , 𝑘, is 

exponentially distributed with parameter 𝜇𝑖. It is possible 

to envisage a general phase type probability distribution 

defined on these phases as the total time spent moving in 

some probabilistic fashion among the k different phases. 

 To analyse general phase type distribution, we make the 

following representation: 

- For the initial probabilities, let,  𝑅𝑖 ,     𝑖 =
1, 2, 3,… , 𝑘, denote the probabilities that a 

given phase 𝑖  is the first phase entered: 

∑ 𝑅𝑖 = 1
𝑘
𝑖=1 . 

- For the routine probabilities, let  𝑟𝑖𝑗 ,       𝑖, 𝑗 =

1, 2, 3,… , 𝑘,  denotes the probability that, after 

spending an exponentially distributed amount 

of time with mean 
1

𝜇𝑖
 in phase 𝑖, the next phase 

entered is phase 𝑗, for all 𝑖.   𝑟𝑖𝑖 < 1  ,  while for 

at least a value of 𝑖, ∑ 𝑟𝑖𝑗 < 1
𝑘
𝑖=1 . 

- For the terminal probabilities, let   𝜑𝑖 ,       𝑖 =
1, 2, 3,… , 𝑘, denote the probabilities that the 

process terminates on exiting from phase 𝑖, and 

at least one must be strictly positive. For all  

𝑖,   𝑖 = 1, 2, 3,… , 𝑘,  

Therefore, 

𝜑𝑖 + ∑ 𝑟𝑖𝑗 = 1
𝑘
𝑖=1 : 

This implies that, on exiting from phase 𝑖, either 

another phase 𝑗 is entered with probability  𝑟𝑖𝑗 or the 

process terminates with probability 𝜑𝑖 
Therefore, we can analyse the Coxian distribution as 

form of general type distribution as follow: 

Given the Coxian distribution with the initial 

probabilities vector  𝑅 =  (1,0,0, . . . ,0); and the terminal 

probabilities  𝜑 = (1 − 𝛼1), (1 − 𝛼2), (1 − 𝛼3), … , (1 −

𝛼𝑘−1), 1)) 

This can be represents pictorially as follows: 

 

                 ∝2              ∝3                        ∝𝑟  
 

 

      (1−∝1)      (1−∝2)            (1−∝𝑟−1)               1 

 

 

               
Figure 3: Coxian Distribution 

The probabilities 𝑟𝑖𝑗 are the elements of the matrix 

𝑀 =

(

 
 

0 ∝1 0
0 0 ∝2

⋯
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
∝𝑘−1
0 )

 
 

 

The vectors 𝑅and 𝜑 and the matrix 𝑀 together with the 

parameters of the exponential distributions completely 

characterize a Coxian distribution. 

The following two cases are going to be considered: 

i. When the squared coefficient of variation, 

𝑐𝑦
2 ≤ 1; 

ii. When the squared coefficient of variation, 

𝑐𝑦
2 > 1  

 

 To solve the first case,  𝑐𝑦
2 ≤ 1,  we assumed the 

following 

𝜇𝑖 = 𝜇,     ∀ 𝑖 = 1, 2, … , 𝑟 
And 

𝛼𝑖 = 𝛼,     ∀ 𝑖 = 1, 2,… , 𝑟 
This is shown in the figure 4 below: 

 

                                   
                       

                                                          1 

        𝟏−∝   
 

Figure 4:  Coxian for 𝑐𝑦
2 < 1 

To obtain the value that we must assign to 𝜇 and ∝, we 

must first compute the mean and the square coefficient of 

variation of the distribution represented by figure 4. 

We begin with Laplace transform 

𝐿𝑌(𝑠) = (1−∝)
𝜇

𝑠 + 𝜇
+∝∏

𝜇

𝑠 + 𝜇

𝑟

𝑖=1

= (1−∝)
𝜇

𝑠 + 𝜇
+

∝
𝜇𝑟

𝑠 + 𝜇𝑟
 

𝜇1 𝜇2 𝜇𝑟−1 𝜇𝑟  

𝜇 𝜇 𝜇 

http://www.ftstjournal.com/
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𝐸[𝑌] =
𝑑

𝑑𝑠
((1−∝)

𝜇

𝑠 + 𝜇
+∝

𝜇𝑟

𝑠 + 𝜇𝑟
)

𝑠=0

 

𝐸[𝑌] = [(1−∝)
𝜇

(𝑠 + 𝜇)2
+∝

𝜇𝑟𝑟

(𝑠 + 𝜇)𝑟+1
]
𝑠=0

 

𝐸[𝑌] = (1−∝)
1

𝜇
+∝

𝑟

𝜇
   

  (14) 

 

𝐸[𝑌2] = (−1)2
𝑑2

𝑑𝑠2
((1−∝)

𝜇

𝑠 + 𝜇
+∝

𝜇𝑟

𝑠 + 𝜇𝑟
)

𝑠=0

 

=
𝑑

𝑑𝑠
(−(1−∝)

𝜇

(𝑠 + 𝜇)2
−∝

𝜇𝑟𝑟

(𝑠 + 𝜇)𝑟+1
)
𝑠=0

 

((1−∝)
2𝜇

(𝑠 + 𝜇)3
−∝

𝑟(𝑟 + 1)

(𝑠 + 𝜇)𝑟+2
)

𝑠=0

 

𝐸[𝑌2] = (1−∝)
2

𝜇2
+∝

𝑟(𝑟+1)

𝜇2
   

   (15) 

 

𝑉𝑎𝑟[𝑌] = 𝐸[𝑌2] − [𝐸[𝑌]]
2
= (1−∝)

2

𝜇2
+

∝
𝑟(𝑟 + 1)

𝜇2
− [(1−∝)

1

𝜇
+∝

𝑟

𝜇
]
2

 

𝑉𝑎𝑟[𝑌] =
2(1−∝)+∝ 𝑟(𝑟 + 1) − (1−∝ +𝑎𝑟)2

𝜇2
 

Finally, we obtain the coefficient as 𝑐𝑦
2 =

𝑉𝑎𝑟[𝑌]

𝐸[𝑌]2
=

2(1−∝)+∝𝑟(𝑟+1)−(1−∝+𝑎𝑟)2

𝜇2

(1−∝)
2

𝜇2
+∝

𝑟(𝑟+1)

𝜇2

⁄  

𝑐𝑦
2 =

2(1−∝)+∝𝑟(𝑟+1)−(1−∝+𝑎𝑟)2

(1−∝+𝑎𝑟)2
  

   (16) 

The next step is to select three parameters, 𝑟, 𝛼,and 𝜇, 

that satisfy the two equations (14) and (16). Additionally, 

we are to choose r to be greater than
1

𝑐𝑦
2, since it is 

advantageous to choose r as small as possible. 

Therefore, setting 

𝑟 =
1

𝑐𝑦
2 

Having chosen a value for 𝑟, and with our given value of 

𝑐𝑦
2, we can use Equation (16), which involves only r, 𝑐𝑦

2, 

and α, to find an appropriate value for α. Marie (1980) 

recommends the choice that, 

∝=

𝑟 − 2𝑐𝑦
2 +√𝑟2 + 4 − 4𝑟𝑐𝑦

2

2(𝑐𝑦
2 + 1)(𝑟 − 1)

 

Finally, μ is then computed from Equation (14). 

 

For the second case,  𝑐𝑦
2 > 1. 

Let us begins from Coxian for 𝑐𝑦
2 ≥ 0.5 as denoted in the 

Figure 5 below: 

 

                          

                             ∝                

 

                1−∝                               1 

 

Figure 5: Coxian for 𝒄𝒚
𝟐 ≥ 𝟎. 𝟓 

 

Where for Cox-2 distribution 

𝐸[𝑌] =
1

𝜇1
+
∝

𝜇2
=
𝜇2+∝𝜇1

𝜇1𝜇2
. 

And 

𝑉𝑎𝑟[𝑌] =
𝜇2
2+∝ 𝜇1

2
(2−∝)

(𝜇2 +∝ 𝜇1)
2  

 

Given 𝐸[𝑌]and 𝒄𝒚
𝟐, our task is to use these equations to 

find the three parameters 𝜇1, 𝜇2, and 𝛼. From the infinite 

number of solutions possible, the following is frequently 

recommended since it yields particularly simple forms by 

Marie (1980): 

 

𝜇1 =
2

𝐸[𝑌]
,      ∝=

1

2𝒄𝒚
𝟐 ,    𝑎𝑛𝑑  𝜇2 = 

1

𝐸[𝑌]𝒄𝒚
𝟐 =∝ 𝜇1. 

This distribution is valid for values of 𝒄𝒚
𝟐 that satisfy 

𝒄𝒚
𝟐 ≥ 𝟎. 𝟓, and not just for those values greater than or 

equal to 1. 

Results and Discussion 

This section presented the solutions for fittings of 

performance measuresfor general phase type 

distributions to obtain the expectation, kth moment, 

variance, and squared coefficient of variation, as well as 

its probability density function. 

Illustrative Example 1 

Given a general phase-type distribution having four 

phases and exponential parameters 𝜇𝑖 , 𝑖 =  1,2,3,4;  

vectors𝑅 =  (0, .4,0, .6) and 𝜑 =  (0,0, .1,0) and routing 

probability matrix 

𝑀 = (

0 0.5 0 0.5
0 0 0 1
0.2
1

0
0

0
0

0.7
0

) 

begins life in phase 2 with probability 0.4 or in phase 4 

with probability 0.6, and moves among the phases until it 

eventually departs from phase 3. It has the graphical 

interpretation of Figure 6. 

General phase-type distributions frequently have an extra 

phase appended to represent the exterior into which the 

process finally departs. Once in this phase, called a sink 

or an absorbing phase, the process remains there forever. 

In this case, it is usual to combine the parameters of the 

exponential distributions of the phases and the routing 

probabilities into a single matrix 𝑄 whose elements 𝑞𝑖𝑗 

give the rate of transition   0.4 

                                  0.5              

 

                                             0.2            1 

                      1     0.5                                                0.1         

                                       

            0.6                                0.7 

 

Figure 6: A general Phase Type Distribution 

from phase 𝑖 to some other phase 𝑗, i.e., 𝑞𝑖𝑗 = 𝜇𝑖𝑗𝑟𝑖𝑗 . It 

is also usual to set the diagonal element in each row of 

this matrix equal to the negated sum of the off-diagonal 

elements in that row, i.e., 𝑞𝑖𝑖 = ∑ 𝑞𝑖𝑗𝑖≠𝑗   Thus the sum of 

all the elements in any row is zero. As we shall see later, 

this matrix together with an initial starting vector 

describes a continuous-time Markov chain with a single 

absorbing state. The matrix is called the transition-rate 

matrix or infinitesimal generator of the Markov chain.  

For given Initial distribution: (1 0 0 … 0 0) =
(𝑅 𝑂) 
 

𝜇1 𝜇2 

1 

2 

3 

4 
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𝑀

=

(

 
 
 
 

−𝜇1 𝜇1 ∝1 0
0 𝜇2 𝜇2 ∝2

⋯
𝜇1(1 −∝1)

𝜇2(1 −∝2)
⋮ ⋱ ⋮

0 0 0

0 0 0

⋯

𝜇𝑘−1 ∝𝑘−1 𝜇𝑘−1(1−∝𝑘−1)
−𝜇𝑘

0

𝜇𝑘

0 )

 
 
 
 

 

 

Now, given a Coxian distribution with four phases and 

rates 𝜇1 = 1, 𝜇2 = 2, 𝜇3 = 4, 𝜇4 = 8. On completion of 

phase 𝑖 =  1,2,3, the process proceeds to phase 𝑖 + 1 

with probability 0.5 or enters the sink phase with 

probability 0.5. This allows us to write. 

Solution 

𝑹𝑰 = (𝟏 𝟎 𝟎 𝟎 𝟎) = (𝑹 𝟎) 
 

𝑴 =

(

 
 

−𝜇1 0.5𝜇1 𝟎 𝟎 0.5𝜇1
𝟎 −𝜇2 𝟎. 𝟓𝜇2 𝟎 𝟎. 𝟓𝜇2.
𝟎
0
𝟎

𝟎
𝟎
𝟎

−𝜇3
𝟎
𝟎

𝟎. 𝟓𝜇3
−𝜇4
𝟎

𝟎. 𝟓𝜇3
𝜇4
𝟎 )

 
 

=

(

 
 

−1 0.5 𝟎 𝟎 0.5
𝟎 −2 𝟏 𝟎 𝟏
𝟎
0
𝟎

𝟎
𝟎
𝟎

−4
𝟎
𝟎

𝟐
−8
𝟎

𝟐
8
𝟎)

 
 

= (𝑺 𝑺𝟎

𝟎 𝟎
) 

where 

𝑆−1 = (

−1 −0.25 −0.0625 −0.015625
0 −0.5 −0.125 −0.03125
0
0

0
0

−0.25
0

−0.0625
−0.125

) 

and 

−𝑅𝑆−1 = 1 0.25 0.0625 0.1563. 

Therefore the expectation of this Coxian (and the mean 

time to absorption in the Markov chain) is 

−𝑅𝑆−1𝑒 = 1.3281 

Also, the mean time spent in  

Phase 1:     
1

𝜇1
= 1 = 𝑦1 

Phase 2:     
0.5

𝜇2
= 0.25 = 𝑦2 

Phase 3:     
0.5×0.5

𝜇3
= 0.0625 = 𝑦3 

Phase 4:     
(0.5)3

𝜇4
= 0.015625 = 𝑦4 

Fitting Phase-Type Distributions to Means and Variances 

 

Illustrative Example 2 

To construct a phase-type distribution having expectation 

𝐸[𝑌]  =  3 and variance 𝑉𝑎𝑟[ 𝑌]  =  4. With these 

parameters, we have 𝑐𝑦
2 =

4

9
= 0.4444 which is less than 

1 and we may use the analysis just developed. We choose 

parameters for a Coxian distribution as represented in 

Figure 7: 

𝑟 = [
1

𝑐𝑦
2] =

1

0.4444
= 2.25 

∝=

𝑟 − 2𝑐𝑦
2 + √𝑟2 − 4 − 4𝑟𝑐𝑦

2

2(𝑐𝑦
2 + 1)(𝑟 − 1)

=
2.25 − 2(0.4444) + √(5.0626 + 4 − 4(2.25)(0.4444))

2(0.4444 + 1)(2.25 − 1)
 

∝=
1.3612 + √1.063

3.611
= 0.6625 

𝜇 =
1+∝ (𝑟 − 1)

𝐸[𝑌]
=
1 + 0.6625(2.25 − 1)

3
=
1.82813

3
= 0.6094 

Let us check our answers by computing the expectation 

and variance of this Coxian: 

𝐸[𝑌] = (1−∝)
1

𝜇
+∝

𝑟

𝜇

= (1 − 0.6625)
1

0.6094

+ 0.6625(
2.25

0.6094
)

= 0.5538 + 2.446 = 3 

𝑉𝑎𝑟[𝑌] =
2(1−∝)+∝ 𝑟(𝑟 + 1) − (1−∝ +𝑎𝑟)2

𝜇2

=
2(1 − 0.6625) + 0.6625(2.25)(3.25) − (1 − 0.6625 + 1.4906)2

0.3714
 

 

𝑉𝑎𝑟[𝑌] =
0.675 + 4.8445 − 3.3420

0.3714
=
2.1776

0.3714
= 5.8632. 

For coefficients of variation greater than 1, it suffices to 

use a two-phase Coxian. This is represented in Figure 7, 

where it is apparent that we need to find three 

parameters, namely, 𝜇1, 𝜇2  𝑎𝑛𝑑 𝛼. 

Illustrative Example 3 

A random variable 𝑌 having expectation 𝐸[𝑌] = 3and 

standard deviation equal to 𝜎𝑌 = 4 may be modeled as a 

two-phase Coxian. Given that 𝐸[𝑌] = 3and 𝒄𝒚
𝟐 =

𝟏𝟔

𝟗
 , we 

may take the parameters of the Coxian distribution to be 

𝜇1 =
2

𝐸[𝑌]
=
2

3
,      ∝=

1

2𝒄𝒚
𝟐 =

9

32
,    𝑎𝑛𝑑  𝜇2 = 

1

𝐸[𝑌]𝒄𝒚
𝟐

=∝ 𝜇1 =
3

16
. 

To check, we find the expectation and standard deviation 

of this Coxian 

𝐸[𝑌] =
1

𝜇1
+

∝

𝜇2
=
𝜇2+∝𝜇1

𝜇1𝜇2
=
3
16⁄ +9 32⁄ (2 3⁄ )

2
3⁄ (
3
16⁄ )

=
6
16⁄

2
16⁄
= 3. 

And 

𝑉𝑎𝑟[𝑌] =
𝜇2
2+∝ 𝜇1

2
(2−∝)

(𝜇2 +∝ 𝜇1)
2

=
(
3

16
)
2
+ (

2

3
)
2
(2 −

9

32
)

(
3

16
+

3

16
)
2

=
16

9
 

As an alternative to the Coxian-2, a two-phase hyper-

exponential distribution such as that shown in Figure13 

may also be used to model distributions for which 

squared coefficient of variation,𝒄𝒚
𝟐 ≥ 𝟏. As is the case for 

a Coxian-2 distribution, a two-phase hyper-exponential 

distribution is not defined uniquely by its first two 

moments so that there is a considerable choice of 

variations possible. One that has attracted attention is to 

balance the means by imposing the additional condition 

 

 

                              ∝1 

 

 

                          1 −∝1 

  

 

 

 Figure 7: Two Phase Hyper-exponential Distribution 
∝

𝜇1
=
1−∝

𝜇2
 

This leads to the formulae 

𝜇1 

𝜇2 
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∝=
1

2
(1 + √

𝒄𝒚
𝟐 − 𝟏

𝒄𝒚
𝟐 + 𝟏

),    𝜇1 =
2 ∝

𝐸[𝑌]
,   𝑎𝑛𝑑 𝜇2

=
2(1−∝)

𝐸[𝑌]
. 

Illustrative Example 3 

 Let us return to the previous example of a random 

variable with expectation 𝐸[𝑌]  =  3 and squared 

coefficient of variation 𝒄𝒚
𝟐 =

𝟏𝟔

𝟗
 and see what parameters 

we obtain for the two-phase hyper-exponential: 

∝=
1

2
(1 + √

16

9
− 1

16

9
+ 1

) = 0.7646, 

𝜇1 =
2 ∝

𝐸[𝑌]
=
2(0.7646)

3
= 0.5097. 

𝜇2 =
2(1−∝)

𝐸[𝑌]
=
2(1 − 0.7646)

3
= 0.1570. 

We now check these results. The expectation of the two-

phase hyper-exponential is given by 

𝐸[𝑌] =
∝

𝜇1
+
1−∝

𝜇2
=
0.7646

0.5097
+
0.2354

0.1570
= 3.0 

Similarly, the squared coefficient of variation is given by 

𝑐𝑦
2 =

2 ∝
𝜇1
2⁄ + 2

(1−∝)
𝜇2
2⁄

(∝ 𝜇1⁄ +
(1−∝)

𝜇2⁄ )
2 − 1

=

2(0.7646)
(0.5097)2⁄ + 2

(0.2354)
(0.1570)2⁄

(0.7646 0.5097⁄ +
(0.2354)

0.1570
⁄ )

2 − 1

=
25

9
− 1 =

16

9
 

In this study, we considered the possibility of matching 

only the first two moments of a distribution with phase-

type representations, but these could be extendedto 

matching higher moments. 

 

Conclusion: 

In this study, The fittings of Performance measures for 

general phase type distribution is considered, in order to 

provide some insight into the mean, kth moment, 

variance, Laplace Stieltjes transform and squared 

coefficient of variation of phase type distribution.we 

begin from the exceptional mathematical tractability and 

memoryless property of exponential distribution, and 

since these properties of exponential are not enough, we 

considered the passage through a succession of 

exponential phases or stages through matrix and vector 

operations to arrive at performance measures. Illustrative 

examples are demonstrated for various cases to arrive at 

various values for Laplace Stieltjes transform, squared 

coefficient of variation,kth moment, mean and variance 

for the phase type distributions. 
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